Modular Organization of Functional Network Connectivity in Healthy Controls and Patients with Schizophrenia during the Resting State
نویسندگان
چکیده
Neuroimaging studies have shown that functional brain networks composed from select regions of interest have a modular community structure. However, the organization of functional network connectivity (FNC), comprising a purely data-driven network built from spatially independent brain components, is not yet clear. The aim of this study is to explore the modular organization of FNC in both healthy controls (HCs) and patients with schizophrenia (SZs). Resting state functional magnetic resonance imaging data of HCs and SZs were decomposed into independent components (ICs) by group independent component analysis (ICA). Then weighted brain networks (in which nodes are brain components) were built based on correlations between ICA time courses. Clustering coefficients and connectivity strength of the networks were computed. A dynamic branch cutting algorithm was used to identify modules of the FNC in HCs and SZs. Results show stronger connectivity strength and higher clustering coefficient in HCs with more and smaller modules in SZs. In addition, HCs and SZs had some different hubs. Our findings demonstrate altered modular architecture of the FNC in schizophrenia and provide insights into abnormal topological organization of intrinsic brain networks in this mental illness.
منابع مشابه
Resting-state Functional Connectivity During Controlled Respiratory Cycles Using Functional Magnetic Resonance Imaging
Introduction: This study aimed to assess the effect of controlled mouth breathing during the resting state using functional magnetic resonance imaging (fMRI). Methods: Eleven subjects participated in this experiment in which the controlled “Nose” and “Mouth” breathings of 6 s respiratory cycle were performed with a visual cue at 3T MRI. Voxel-wise seed-to-voxel maps and whole-brain region of i...
متن کاملDecreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial
Functional network connectivity (FNC) is a method of analyzing the temporal relationship of anatomical brain components, comparing the synchronicity between patient groups or conditions. We use functional-connectivity measures between independent components to classify between Schizophrenia patients and healthy controls during resting-state. Connectivity is measured using a variety of graph-the...
متن کاملAlterations in Hippocampal Functional Connectivity in patients with Mesial Temporal Sclerosis
Introduction: Medial temporal sclerosis (MTS) is a form of mesial temporal lobe epilepsy (mTLE). It is typically characterized by structural alterations in hippocampus (HC) and related mesial temporal lobe (MTL) network. Resting state functional connectivity (RSFC) is considered an ideal technique in quantifying the dysfunction and maladaptation in MTL network. It is well- dem...
متن کاملA method for functional network connectivity among spatially independent resting-state components in schizophrenia
Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). Howev...
متن کاملDefault-mode network dysfunction and self-referential processing in healthy siblings of schizophrenia patients
The default-mode network (DMN) of the brain shows highly coherent intrinsic activity in healthy subjects and is implicated in self-referential processing important for social cognitive functioning. Schizophrenia patients show abnormal resting-state connectivity within the DMN and this aberrant connectivity is thought to contribute to difficulties in self-referential and introspective processing...
متن کامل